nrm_selection.Rd
Perform AIC forward selection for nrm.
nrmSelection(
adj,
predictors,
directed,
selfloops,
pval = 0.05,
xi = NULL,
init = NULL,
ncores = NULL,
...
)
nrm_selection(
adj,
predictors,
directed,
selfloops,
pval = 0.05,
xi = NULL,
init = NULL,
ncores = NULL,
...
)
# S3 method for default
nrm_selection(
adj,
predictors,
directed,
selfloops,
pval = 0.05,
xi = NULL,
init = NULL,
ncores = NULL,
...
)
# S3 method for nrmpredictor
nrm_selection(
adj,
predictors,
directed,
selfloops,
pval = 0.05,
xi = NULL,
init = NULL,
ncores = NULL,
...
)
# S3 method for nrm_selection
print(x, ...)
the adjacency matrix of the response network
list containing the set of predictors as sublists.
logical, is the response network directed?
logical, do the response network allows selfloops?
the significance at which computing confidence intervals.
optional, the possibility matrix Ξ.
optional, initial values passed to the solver to estimate the MLE.
optional, number of cores over which parallelise the task.
optional arguments to print or plot methods.
object of class 'nrm_selection'
.
A nrm object
nrm_selection(default)
: Default method for the nrm stepwise selection.
nrm_selection(nrmpredictor)
: Method for the nrm stepwise selection when nrmpredictors are passed.
print(nrm_selection)
: Print method for elements of class 'nrm_selection'
.
nrm_selection
# \donttest{
data('highschool.predictors')
models <- nrm_selection(adj=contacts.adj,predictors=create_predictors(highschool.predictors),
ncores=1,directed=FALSE,selfloops=FALSE)
#> Creating predictors list...
#>
#> Estimating Null model...
#>
#> Performing forward stepwise selection:
#>
#> Step 1 of 5...
#>
#> Step 2 of 5...
#>
#> Step 3 of 5...
#>
#> Step 4 of 5...
#>
#> Step 5 of 5...
#>
#> Model estimation concluded.
texreg::screenreg(models$models, digits=3)
#>
#> ==============================================================================================
#> Model 1 Model 2 Model 3 Model 4 Model 5
#> ----------------------------------------------------------------------------------------------
#> class 2.016 *** 1.914 *** 1.391 *** 1.393 *** 1.392 ***
#> (0.004) (0.004) (0.005) (0.005) (0.005)
#> friendship 0.679 *** 0.675 *** 0.703 *** 0.696 ***
#> (0.002) (0.002) (0.002) (0.002)
#> topic 0.999 *** 1.011 *** 1.000 ***
#> (0.009) (0.009) (0.009)
#> facebook -0.088 *** -0.089 ***
#> (0.002) (0.002)
#> gender 0.077 ***
#> (0.002)
#> ----------------------------------------------------------------------------------------------
#> AIC 692711.753 627181.581 612308.357 610880.109 609529.798
#> McFadden $R^2$ 0.486 0.534 0.545 0.546 0.547
#> ==============================================================================================
#> *** p < 0.001; ** p < 0.01; * p < 0.05
# }