gof.test.Rd
Perform a goodness-of-fit test
gof.test(
model,
Beta = TRUE,
nempirical = NULL,
parallel = NULL,
returnBeta = FALSE,
seed = NULL
)
ghype model to test
boolean, whether to use empirical Beta distribution approximation. Default TRUE
optional scalar, number of replicates for empirical beta distribution.
optional, number of cores to use or boolean for parallel computation. If passed TRUE uses all cores-1, else uses the number of cores passed. If none passed performed not in parallel.
boolean, return estimated parameters of Beta distribution? Default FALSE.
scalar, seed for the empirical distribution.
p-value of test. If returnBeta=TRUE returns the p-value together with the parameters of the beta distribution.
data("adj_karate")
confmodel <- scm(graph = adj_karate, directed = FALSE, selfloops = FALSE)
gof.test(model = confmodel, seed = 123)
#>
#> LR test -- GOF
#>
#> data:
#> lr = 649.84, df = 560, p-value < 2.2e-16
#> alternative hypothesis: one.sided
#> 95 percent confidence interval:
#> 339.1651 413.9994
#>